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Do envelope solitons radiate?
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Abstract. In dispersive wave systems, when leading-order nonlinear and dispersive effects are taken into account,
the envelope of a small-amplitude narrow-band wave pulse is known to satisfy the nonlinear Schrödinger (NLS)
Equation which, under certain conditions, admits envelope-soliton solutions. These solitons describe locally con-
fined wave groups with envelopes of permanent form and find applications in various physical contexts. Here, the
question of whether NLS envelope solitons survive when higher-order effects are taken into account is addressed.
Based on a kinematic argument first, it is suggested that oscillatory tails are inevitably emitted, and this claim
is further supported by numerical computations by use of a fifth-order Korteweg-deVries equation as a simple
example. The radiation of tails is caused by a resonance mechanism that lies beyond all orders of the usual
multiple-scale expansion leading to the NLS equation, and a procedure for calculating these tails by use of
exponential asymptotics is outlined. Despite having exponentially small amplitude in the asymptotic sense, the
radiated tails can be significant when pulses of relatively short duration are considered.
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1. Introduction

The nonlinear Schrödinger (NLS) Equation is the canonical evolution equation of the envelope
of a small-amplitude narrow-band wave pulse in dispersive wave systems. Ever since it was
first derived over thirty years ago [1], the NLS Equation has been instrumental in understand-
ing various nonlinear wave phenomena and it is now considered fundamental to nonlinear
wave motion, on equal footing with the celebrated Korteweg-deVries (KdV) Equation that
governs the propagation of weakly nonlinear long waves. Among a number of interesting
properties that they possess, it is remarkable that both the KdV and the NLS equations are
completely integrable via the inverse scattering transform (see, for example, [2, 3]).

Physical motivation for the original derivation of the NLS Equation and for most of the
early work on nonlinear dispersive waves in general was drawn from fluid mechanics, es-
pecially surface and internal waves with geophysical applications. (A comprehensive review
of this body of work can be found in the monograph by Craik [4].) It turns out, however,
that many results first obtained for nonlinear waves in fluid flows are also relevant in other
applications. In recent years, for example, a popular and rapidly evolving field of research in
view of its technological promise is the propagation of electromagnetic wave pulses in optical
fibers, and the NLS equation is of central importance in this setting as well [5].

Under conditions that a uniform periodic wavetrain is unstable to modulations – the so-
called Benjamin-Feir instability in the context of deep-water gravity waves [6] – the NLS
Equation is known to admit envelope-soliton solutions. These correspond to stable, locally
confined wave groups with envelopes of permanent form and play an important part in the
long-time evolution of a locally confined initial disturbance. Moreover, as they achieve a
perfect balance of dispersion and nonlinearity, it was suggested on theoretical grounds [7]
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and later demonstrated experimentally [8] that NLS solitary wave pulses are suitable for
transmitting data in optical fibers.

In deriving the NLS Equation for the envelope of a narrow-band small-amplitude wave
pulse, only the dominant nonlinear and dispersive effects are included. This approximation is
bound to fail eventually, however, when higher-order effects come into play after a number
of cycles depending on the steepness and the duration of the pulse. For example, according
to laboratory observations of deep-water gravity waves in a tank, an initially symmetric pulse
with uniform frequency becomes asymmetric after propagating for some distance along the
tank [9], whereas the same pulse would remain symmetric based on the NLS Equation. This
discrepancy can be explained theoretically by a more accurate envelope equation than the NLS
Equation that includes certain nonlinear modulation terms [10, 11], and the same theoretical
approach has also been used to study higher-order effects in optical solitons [5, Chapter 8].

In contrast to these prior studies, here we wish to explore a phenomenon that cannot
be discussed within the narrow-band approximation, namely the radiation of tails by NLS
solitary wave pulses. As it turns out, these tails comprise wavenumbers that, in general, are
not sidebands of the carrier wavenumber, so they cannot be properly described by an evolution
equation for the wave envelope.

The first indication that NLS solitons may radiate tails was revealed by a numerical study
of a modified NLS Equation with a third-order-derivative dispersive term [12]; this third-
order NLS Equation replaces the standard NLS in the vicinity of caustics [13], such as the
zero-dispersion wavelength in optical fibers. By use of an NLS soliton as initial condition,
radiation manifests itself as small-amplitude periodic waves travelling with the same phase
speed as the solitary-wave main core. Consequently, NLS envelope solitons become nonlocal
– they develop oscillatory tails of non-vanishing amplitude – near caustics [14, 15], and solit-
ary waves of the KdV type also turn out to be nonlocal in certain instances owing to a similar
resonance mechanism [16, 17].

In general, however, when the carrier wavelength of a solitary wave pulse is not close to
a caustic, the tails implied by the third-order NLS Equation have comparable wavelength to
the carrier, violating the slowly-varying-envelope approximation. Therefore, the distinction
between the carrier and its envelope is blurred at the tails of the pulse and one has to use
the full governing equation rather than an envelope equation to investigate the form of the
disturbance there. For this purpose, we shall work with the fifth-order KdV Equation as a
simple example of a dispersive wave system that supports solitary pulses of the NLS type.

On the basis of a purely kinematic argument, it is deduced that the wavenumbers that
partake in the tails satisfy certain resonance conditions that depend on the dispersion relation
of the problem at hand. Hence, given the carrier wavenumber, these resonant wavenumbers
can be readily determined, suggesting that solitary pulses radiate tails in general. The tail
amplitude cannot be found so easily, however, as it turns out to be exponentially small with
respect to the steepness of the main pulse. To calculate the tail amplitude asymptotically, it
is necessary to carry beyond all orders the usual multi-scale expansion underlying the NLS
Equation, and details are worked out here for solitary pulses governed by the fifth-order KdV
Equation.

Despite the fact that the tail amplitude is exponentially small in the asymptotic sense,
numerical simulations of the long-time evolution of solitary pulses of the fifth-order KdV
Equation indicate that the radiated tails often form a significant part of the overall signal,
causing considerable distortion of the main pulse. This suggests that radiation could be an
important issue when dealing with solitary pulses of relatively short duration.
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2. Wave pulses with solitary envelopes

In describing a wave pulse with envelope of permanent form, rather than the space and time
variablesx andt , we find it convenient to use the two phases

θ = k0(x − ct), ξ = ε(x − Ct), (1)

which move with the carrier and its envelope, respectively,c andC being their corresponding
speeds. Also, to bring out the fact that the envelope is varying slowly relative to the carrier,ξ

has been scaled with 0< ε � 1, the ratio of the carrier wavelength 2π/k0 to a characteristic
lengthscale of the envelope.

In terms ofθ andξ , then, a solitary wave pulse

u(x, t) = U(θ, ξ ; ε) (2)

is such thatU is 2π -periodic inθ and locally confined inξ

U → 0, (|ξ | → ∞). (3)

Generally, the wave profileU satisfies a nonlinear partial differential equation and is ana-
lytically intractable. In the small-amplitude limit, on the other hand, the standard solution
procedure is to expandU

U = ε{A(ξ) eiθ + c.c.} + ε2A0(ξ)+ ε2{A2(ξ)e2iθ + c.c.} + · · · , (4)

as well as

c = c0+ ε2c2+ · · · , (5a)

C = cg
∣∣
0+ ε2C2+ · · · , (5b)

here, consistent with the linear theory;c0 = ω0/k0 denotes the linear phase speed at the
carrier wavenumberk0 andcg|0 = dω/dk|0 the corresponding group speed as obtained from
the linear dispersion relationω = ω(k).

Upon substitution of these expansions in the equation governingU , the fact that the higher
harmonics in the Fourier series (4) are of progressively smaller amplitude allows one to solve
for A0, A2, . . . in terms ofA, the envelope of the primary harmonic which turns out to satisfy
an evolution equation of the NLS type. Solitary wave pulses, consistent with the condition (3)
that they remain locally confined, then correspond to solutions of this evolution equation such
that

A→ 0, (|ξ | → ∞). (6)

Although it is straightforward, the perturbation procedure outlined above typically involves
a considerable amount of algebra. In the interest of brevity, here we shall work with a relatively
simple example of a dispersive wave system, namely the fifth-order KdV Equation in the
normalized form

ut + 6uux + uxxx + uxxxxx = 0. (7)
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In this case, the linear dispersion relation is

ω(k) = −k3+ k5 (8)

and the details of deriving the evolution equation governingA have already been worked out
in [18]. Specifically

A0 = 6
|A|2
cg|0 +O(ε

2), (9a)

A2 = A2

k2
0(1− 5k2

0)
+ 2iε

1− 10k20
k3

0(1− 5k2
0)

2
AAξ +O(ε2) (9b)

andA satisfies the equation

−k0c2A+ µA2A∗ + λAξξ

+iε

[
γAξξξ + C2Aξ − µ

k0
(A2A∗)ξ + ν|A|2Aξ

]
= O(ε2), (10)

where

µ = 6

k0

3− 25k20
(1− 5k2

0)(5k
2
0 − 3)

, λ = k0(3− 10k20),

γ = 10k20 − 1, ν = 12

k2
0

1− 10k20
(1− 5k2

0)
2
.

In looking for solitary-wave solutions, we find it convenient to introduce the polar form

A = S(ξ)eiφ(ξ). (11)

Upon substitution in (10), it is found thatS andφ satisfy

λS ′′ − k0c2S + µS3 = O(ε2), (12a)

φ′ = − ε
λ

{
γ

[
S ′′

S
− 1

2

(
S ′

S

)2
]
+ 1

2 C2+ 1

4

(
ν − 3µ

k0

)
S2

}
+O(ε2). (12b)

Hence, locally confined solutions forS consistent with (6) can be obtained only when
λµ > 0 which occurs in the ranges

√
3/25< k0 <

√
1/5 and

√
3/10< k0 <

√
3/5. Taking

k0 so that this condition is met and normalizing the peak amplitude of the primary harmonic
in (4) to be equal toε, we derive the appropriate solution of (12a) as follows

S = 1
2 sechβξ +O(ε2), (13)

where

β = 1

2

( µ
2λ

)1/2
, c2 = µ

8k0
.
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Having determinedS, we can find the phaseφ(ξ) from (12b). Before doing so, however,
to avoid secular terms in expansion (4), we fix the carrier wavenumber to be equal tok0 at the
tails of the pulse:

φ′ → 0, (|ξ | → ∞),
making use of (13) and (12b), this condition then specifiesC2

C2 = −γµ
8λ

andφ(ξ) is given by

φ = φ0 + ε σ

βλ
tanh βξ +O(ε2), (14)

φ0 being an arbitrary phase constant and

σ = 3
2 γβ

2 − 1

16

(
ν − 3µ

k0

)
.

Finally, combining (4), (9), (11), (13) and (14), we obtain the following expression, correct
toO(ε2), for a solitary wave pulse

U = ε sechβξ cos(θ + φ0)+ ε2

{
− σ

βλ
sechβξ tanhβξ sin(θ + φ0)

+sech2 βξ

[
3

2cg|0 +
cos(2θ + 2φ0)

2k2
0(1− 5k2

0)

]}
+ · · · . (15)

While the expansion procedure outlined above can be carried to higher order with no
apparent difficulty, previous experience indicates that it may still not be justified to conclude
that the fifth-order KdV Equation admits solutions in the form of locally confined solitary
pulses: solitary waves that are seemingly locally confined based on approximate theories may
in fact feature tails that do not decay at infinity [17, 19]; the amplitudes of these tails happen
to be exponentially small with respect to that of the main solitary-wave core and cannot be
captured by standard perturbation expansions in powers ofε, like the expansion (4) used here.

Of course, for such tails to appear, it is necessary that they are kinematically compatible
with the main solitary-wave core. In the case of nonlocal solitary waves of the KdV type, for
example, the tail wavenumber is such that the corresponding phase speed matches the speed
of the main disturbance. But in the present situation where the main pulse cannot be made
steady – the carrier and its envelope move at different speeds – this resonance condition is not
appropriate. Accordingly, before revising our perturbation procedure to account for possible
exponentially small terms, we shall derive, based on a kinematic argument, the conditions that
determine whether tails can accompany a solitary pulse in the present setting.

3. Resonance conditions

For the purpose of understanding the generation of tails intuitively, it is helpful to think of
the main solitary pulse as a known forcing disturbance; out of all possible waves that this
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disturbance can excite, only those that are forced resonantly and would appear in the steady-
state response can form tails.

More specifically, according to expansion (4), a solitary pulse may be written as

U = ε
∞∑

n=−∞
Un(ξ ; ε)einθ , (16)

with U−n = U ∗n . In this Fourier series, all harmonics other than the primary(n = 1) have
carriers that, in general, do not satisfy the dispersion relation (8)

ω(nk0) 6= nk0c, (n 6= 1) (17)

and, hence, are not resonant.
To see how resonance may arise, we decompose the envelope of each harmonic into Fourier

components by taking its Fourier transform with respect toξ

Ûn(K; ε) = 1

2π

∫ ∞
−∞

Un(ξ ; ε) e−iKξ dξ,

combining then each of these Fourier components with the corresponding carrier in (16) using
(1),U is seen to comprise terms of the form

Ûn(K; ε) exp{i[(nk0+ εK) x − (nk0c + εKC) t]}. (18)

From this expression, it is now clear that resonance is possible if for some wavenumber(s)
K = K∗, say, the following condition is met

ω∗ = ω(k∗), (19a)

where

k∗ = nk0+ εK∗, ω∗ = nk0c + εK∗C. (19b)

For a given carrier wavenumberk0 and each harmonicn, condition (19a) provides an
equation to determineεK∗; the wavenumberk∗ and frequencyω∗ of the tail corresponding
to each real solution of this equation are then given by (19b). Forn = 0, in particular, the
mean harmonic in (16) is a long-wave disturbance moving with speedC and (19a, b) imply
that the tail wavenumberk∗ is such that the phase speed of the tail matchesC, consistent with
the resonance condition that applies to the tails of solitary waves of the KdV type.

The values of the resonant wavenumbersk∗ that partake in the tails of a solitary wave pulse
depend on the linear dispersion relation of the particular problem at hand and can be computed
numerically as will be discussed in the next section for the fifth-order KdV Equation. From
(19), however, it is clear that, in general, the tail wavenumbers are not sidebands of the carrier
wavenumberk0, so the tails cannot be described by an evolution equation, like (10), for the
envelope of the primary harmonic.

Moreover, in view of (17), conditions (19) indicate that generallyεK∗ = O(1); hence,
the tail amplitude, being proportional to|Ûn(K∗; ε)| according to (18), is expected to be
exponentially small with respect toε – the Fourier transform of a smooth function decays
exponentially as|K| → ∞. This, in fact, suggests a criterion for determining the asymptotic-
ally dominant contribution to the tails: out of allk∗ that satisfy the resonance conditions (19),
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the one corresponding to the smallest value of|K∗| gives the tail with the relatively largest
amplitude. On the other hand, to obtain a precise asymptotic expression for the tail amplitude
asε → 0 is not a straightforward matter and requires techniques of exponential asymptotics
(see Section 5).

Before proceeding with the asymptotic analysis, we turn to numerical simulations of the
evolution of solitary wave pulses of the fifth-order KdV Equation, in an effort to confirm the
resonance conditions (19) and to gain further insight into the generation of tails.

4. Numerical evidence

We shall solve the fifth-order KdV Equation (7) numerically using as initial condition expan-
sion (15) correct toO(ε2) which includes only the fundamental, mean and second harmonics
(n = 1,0,2, respectively) in the Fourier-series representation (16) of a solitary wave pulse.
Thus, attention is focussed on the generation of tails by resonances associated with these three
harmonics.

The numerical scheme we used in integrating the fifth-order KdV Equation is the split-step
Fourier method [10]. To accommodate radiated waves, the computational domain was expan-
ded, once a threshold value near the boundaries was reached. For most of the computations the
step sizes1t = 0·0087,1x = 0·6 were used; it was verified that increasing this resolution
did not change the results significantly. Also, as a further check, the conservation law

∂

∂t

∫ ∞
−∞

u2 dx = 0

was satisfied within 0·5%.
As a preliminary step, it is straightforward to find the values of the tail wavenumbersk(n)∗

(n = 1, 0, 2) predicted by the resonance conditions (19). Using the dispersion relation (8),
we see that they are the real roots of the polynomial

k5
∗ − k3

∗ − Ck∗ + nk0(C − c) = 0, (20)

wherec andC are given by (5). Also, based on the resonance mechanism proposed earlier,
the wave with the largest amplitude at the tails is induced by the harmonicn which yields the
smallest value of envelope wavenumber|K(n)∗ |. The wavenumberk(n)∗ that, according to this
criterion, makes the dominant contribution to the tails is plotted in Figure 1 as a function of
the carrier wavenumberk0 (by use of the lowest-order approximationsc ≈ c0, C ≈ cg|0).

In interpreting the results of the numerical simulations against the quasi-steady state en-
visaged in deriving the resonance conditions (19), we observe that the group speed, being the
energy-transport speed, plays an important part. Specifically, the front associated with each
resonant wavenumberk(n)∗ is expected to propagate with speedcg(k(n)∗ )−C relative to the main
pulse. As a result, it is possible for a resonant wavenumber having a relatively large value of
|cg(k(n)∗ ) − C| to generate a tail faster, and be more apparent during the early stages of the
pulse evolution, than the asymptotically dominant wavenumber which ultimately contributes
the tail with the largest amplitude. Also, since the main pulse has finite energy, the radiation
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Figure 1. Dominant resonant wavenumbersk(n)∗ plot-
ted as a function of carrier wavenumberk0 over the
two intervals

√
3/25 < k0 <

√
1/5 and

√
3/10 <

k0 <
√

3/5 where the NLS Equation associated with
the fifth-order KdV Equation accepts locally confined
envelope soliton solutions.

Figure 2a.

(b) (c)

Figure 2. Pulse evolution shown at the instants (a)t = 0, (b) t = 500 and (c)t = 750. Expression (15) is used
as the initial condition with parametersk0 = 0·4, ε = 0·01 andφ0 = 0. The pulse is displayed in both physical
(top portion) and wavenumber (bottom portion) spaces. The origin ofx has been chosen to coincide with the pulse
center. The magnitude of the spectral amplitude|û| is computed by a base-2 FFT routine usingN = 4096 points.

of tails will eventually lead to some loss of form of the wavepacket envelope, this effect being
more pronounced as the wave steepnessε is increased.

We begin by considering the evolution of a pulse with carrier wavenumberk0 = 0·4 and
steepnessε = 0·01. In this instance, the dominant resonant wavenumber according to the
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theory is provided by the second harmonicn = 2 (see Figure 1) and, from (19),k(2)∗ = 0·8971.
Also sincecg(k(2)∗ ) = 0·82 > 0 andcg(k0) = −0·35 < 0, one expects radiation to be
emitted towards the positivex-direction, opposite to the propagation direction of the main
pulse. Figure 2 shows snapshots of the pulse att = 0, t = 500 andt = 750 along with the
corresponding spectra in the wavenumber domain. The initial profile (Figure 2a) is in the form
of a packet with approximately 18 cycles within the envelope and, as expected, its spectrum
comprises three peaks associated with the fundamental, mean and second harmonics. Att =
500 (Figure 2b), however, a front has developed ahead of the pulse in physical space and a
peak is apparent in wavenumber space atk ≈ 0·9, very close to the theoretically predicted
resonant wavenumberk(2)∗ . At the later time instantt = 750 (Figure 2c), this peak is even
sharper and its attendant radiation more pronounced, with nearly uniform amplitude away
from the front.

As a second example, we discuss a pulse withk0 = 0·6 and ε= 0·02. For this carrier
wavenumber, conditions (19) predict that the dominant resonant wavenumber (corresponding
to the smallest value of|K∗|) is k(1)∗ = 0·4410 for n = 1, while the next dominant one
(corresponding to the second smallest value of|K∗|) is k(2)∗ = 0·8939 forn = 2. A snapshot
of the pulse att = 1100 and the corresponding spectrum are shown in Figure 3. Although a
peak is seen in the wavenumber domain atk ≈ 0·37 in rough agreement withk(1)∗ , the most
striking feature is the dominance of the peak atk ≈ 0·88 which is close tok(2)∗ . Note, however,
thatcg(k(1)∗ )− cg(k0) = 0·038, whilecg(k(2)∗ )− cg(k0) = 1·23. Hence, then = 1 front is very
slow and naturally it takes a long time for the corresponding tail to develop relative to the
n = 2 front. Also, as these front speeds are positive, the two radiated tails appear ahead of the
main pulse, leading to the complicated pattern seen in Figure 3.

Finally, we wish to explore a case in which then = 0 harmonic in the initial condition
furnishes the dominant resonant wavenumber. Forn = 0, Equation (20) in fact reduces to
a biquadratic and real roots corresponding to propagating waves can be found only when
1/
√

2 < k0 <
√

3/5. Accordingly, we consider a pulse with carrier wavenumberk0 = 0·75
and steepnessε = 0·025. For this choice, it turns out thatn = 0 yields both the dominant
resonant wavenumberk(0)∗1 = 0·4347 and the next dominant onek(0)∗2 = 0·9006 according to

Figure 3.Snapshot of pulse evolution att = 1100 for
the conditionsk0 = 0·6, ε = 0·02 andN = 8192.

Figure 4.Snapshot of pulse evolution att = 750 for
the conditionsk0 = 0·75,ε = 0·025 andN = 2048.
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the resonance conditions (19). These predictions are confirmed by the results of the numerical
simulation att = 750 shown in Figure 4: there are sharp peaks in the wavenumber domain
at k ≈ 0·44 and atk ≈ 0·9, in excellent agreement with the theory. Moreover, the radiated
tail with the longer wavelength is found behind the main pulse (sincecg(k

(0)
∗1 ) < cg(k0))

and has larger amplitude than the other tail which appears ahead of the main pulse (since
cg(k

(0)
∗2 ) > cg(k0)).

The numerical results presented thus far certainly support the resonance mechanism pro-
posed earlier; the radiated tails comprise wavenumbers in agreement with those predicted by
the resonance conditions (19). More detailed comparisons between analytical and numerical
results will be made later, after obtaining an asymptotic expression for the tail amplitude in
the weakly nonlinear régimeε � 1.

5. Tail amplitude

On the basis of a heuristic argument, it was deduced in Section 3 that the tails emitted by
a small-amplitude solitary wave pulse have exponentially small amplitude with respect toε.
This suggests that, in order to capture these tails, it is necessary that we carry expansion (4)
beyond all orders inε using techniques of exponential asymptotics.

The procedure for calculating the tail amplitude asymptotically closely parallels that fol-
lowed in a previous study [20] of steady solitary-wave solutions of the fifth-order KdV Equa-
tion in the vicinity of the special carrier wavenumberk0 = 1/

√
2 where the phase speedc0

matches the group speedcg|0. Here, this asymptotic procedure also provides formal justifica-
tion of the resonance conditions (19) that determine the tail wavenumbers.

The fact that a solitary pulse is accompanied by tails in physical space implies the presence
of pole singularities on the real axis at the tail wavenumbers in the wavenumber domain, and
the goal is to compute the corresponding residues which determine the tail amplitudes. To this
end, it is convenient to work in the wavenumber domain.

We begin by returning to expansion (15) forU(θ, ξ ; ε) and taking its Fourier transform
with respect to the envelope variableξ

Û(θ,K; ε) = ε sech
πK

2β

{
1

2β
cos(θ + φ0)+ i

σ

2β3λ
εK sin(θ + φ0)

+ εK
2β2

[
3

2cg |0 +
cos(2θ + 2φ0)

2k2
0(1− 5k2

0)

]
coth

πK

2β
+ · · ·

}
.

This expansion becomes non-uniform whenεK = O(1) and suggests the uniformly valid
two-scale expression

Û = ε sech
πK

2β
Ũ(θ, κ; ε), (21)

whereκ = εK and

Ũ ∼ 1

2β
cos(θ + φ0)+ i

σ

2β3λ
κ sin(θ + φ0)

+ |κ|
2β2

[
3

2cg|0 +
cos(2θ + 2φ0)

2k2
0(1− 5k2

0)

]
+ · · · , (κ → 0). (22)
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Next, Ũ(θ, κ; ε), being 2π -periodic inθ̃ = θ + φ0, may be expanded in a Fourier series

Ũ =
∞∑

n=−∞
An(κ; ε) einθ̃ , (23)

where, from (22)

A0 ∼ 3

4β2cg|0 |κ| + · · · , (κ → 0), (24a)

A±1 ∼ 1

4β
± σ

4β3λ
κ + · · · , (κ → 0), (24b)

A±2 ∼ 1

8β2k2
0(1− 5k2

0)
|κ| + · · · , (κ → 0) (24c)

andAn = O(κ |n|−1) for |n| > 2.
In view of (21) and (23), attention is now focussed on the coefficientsAn and their possible

singularities on the realκ-axis. Upon substitution of (21) and (23) in the fifth-order KdV
Equation (7), after having taken its Fourier transform with respect toξ , it follows that theAn

are governed by

{ω(κ + nk0)− Cκ − nk0c}An

+3(κ + nk0) cosh
πκ

2βε

∞∑
p=−∞

∫ ∞
−∞

An−p(κ − λ)Ap(λ)

cosh
π(κ − λ)

2βε
cosh

πλ

2βε

dλ = 0, (25)

(n = 0,±1, . . .),

ω(k) denoting the linear dispersion relation (8). However, in the limitε → 0, the main
contribution to the convolution integrals above comes from the ranges 0< λ < κ (κ > 0)
andκ < λ < 0 (κ < 0). Also, sinceU is real,A−n(κ) = An(−κ) on the realκ-axis so it
suffices to considerAn (n > 0) only, and using the leading-order approximations toc andC
in (5) the equation system (25) is replaced by

{
ω(κ + nk0)− cg|0 κ − nk0c0

}
An + 6(κ + nk0)

n∑
p=0

sgnκ
∫ κ

0
Ap(λ)An−p (κ − λ) dλ

+12(κ+ nk0)

∞∑
p=1

sgnκ
∫ κ

0
Ap(−λ)An+p (κ − λ) dλ = 0, (n > 0). (26)

In spite of the fact that it appears more complicated than the original partial differential
Equation (7), the integral-equation system (26) is most suitable for analyzing the singularities
of An(κ) on the realκ-axis that are of interest here. These singularities are expected to occur
at κ = κ(n)∗ , say, where the coefficient ofAn in (26) vanishes. Recalling thatκ = εK, it is
clear to us from (8) and (19) that this happens at the real roots of the polynomial (20) which
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in turn correspond to the resonant wavenumbersk(n)∗ = κ(n)∗ + nk0 (in the limit ε → 0, so
c ≈ c0 andC ≈ cg|0). Hence, the formal asymptotic theory is consistent with the resonance
conditions obtained earlier on physical grounds.

The next task is to examine the local behavior ofAn close to each singularity atκ = κ(n)∗
according to the equation system (26). By use of the asymptotic behavior ofAn asκ → 0
noted in (24), dominant balance suggests that

An ∼ Dn

κ
(n)∗ − κ

, (κ → κ(n)∗ , n > 0), (27a)

A0 ∼ D0

κ
(0)∗ ∓ κ

, (κ →±κ(0)∗ ), (27b)

whereDn (n > 0) are constants to be determined.
To verify these simple-pole singularities and compute the residuesDn, we pose the solution

to the system (26) in the form of power series as suggested by expansions (24)

A0 =
∞∑
p=2

b0,p |κ|p−1,

An =
∞∑
p=n

b±n,p κ
p−1, (κ ≷ 0, n > 0),

with

b0,2 = 3

4β2 cg|0 , b±1,1 =
1

4β
, b±1,2 =

σ

4β3 λ
,

b+2,2 = −b−2,2 =
1

8β2 k2
0(1− 5k2

0)
,

etc. If we substitute these series in (26), it follows thatb0,2p+1 = 0, while the rest of the
coefficients satisfy certain recurrence relations that can be readily solved, given the carrier
wavenumberk0. Based on the asymptotic behavior ofbn,p asp → ∞, one may thus infer
the nature of the singularity ofAn at κ = κ(n)∗ and compute the corresponding residue as
well. Implementing this procedure, we verified the presence of simple-pole singularities at
κ = κ(2)∗ , κ(1)∗ andκ(0)∗ , respectively, for the three choices ofk0 = 0·4,0·6 and 0·75 considered
in Section 4, and the results are given in Table 1.

Combining (21) with (23) and (27), each singularity ofAn at κ = κ(n)∗ translates into a
singularity of Û atK(n)∗ = κ(n)∗ /ε. Moreover, sinceAn(κ) = A−n(−κ) on the realκ-axis,
there is an additional simple-pole singularity at−K(n)∗ . Hence

Û ∼ ε Dn

κ
(n)∗ ∓ εK

sech
πκ(n)∗
2βε

e±inθ̃ , (K →±κ(n)∗ /ε, n > 0). (28)

We note that all these singularities have exponentially small residues and, upon inverting
the Fourier transform, the one that contributes the tail with the relatively largest amplitude
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Table 1. Numerically determined residuesDn and paramet-
ers appearing in (28) for the dominantn = 0, 1 and 2
resonances.

k0 n Dn κ
(n)∗ β

0·4 2 0·358 0·0965 2·76

0·6 1 −0·128 −0·170 4·66

0·75 0 −0·369 0·346 4·07

·

corresponds to the smallest value of|κ(n)∗ |, consistent with the heuristic reasoning presented
in Section 3.

More specifically, inverting the Fourier transform, we write

U =
∫

C

Û (θ,K; ε) eiKξ dK

and, sincêU has simple poles on the realK-axis according to (28), the contourC is chosen
so as to satisfy causality:C is indented to pass below (above)K = ±κ(n)∗ /ε whencg(k(n)∗ ) is
greater (less) thancg(k0), k(n)∗ = κ(n)∗ + nk0 being the tail wavenumber andω(n)∗ = cg|0 κ(n)∗ +
nk0c0 the corresponding tail frequency. Hence, the induced tail

u ∼ 8πs Dn exp

(−π |κ(n)∗ |
2βε

)
sin (k(n)∗ x − ω(n)∗ t + nφ0) (29)

is found inξ > 0 (ξ < 0) whens > 0 (s < 0) wheres ≡ sgn(cg(k(n)∗ ) − cg(k0)). This
criterion for determining the position of the tail relative to the main pulse is in line with the
results of the numerical simulations in Section 4.

6. Discussion

Using the fifth-order KdV Equation as a simple example, we have presented analytical and
numerical evidence that solitary wave pulses of the NLS type are accompanied by oscillatory
tails owing to a resonance mechanism: each of the harmonics that make up the main pulse,
acting as a forcing disturbance, can induce small-amplitude dispersive wave tails of the form
(29) either ahead or behind of the main pulse. While the resonant wavenumbers that appear in
the radiated tails are determined by this essentially linear process, the precise values of the tail
amplitudes are controlled by a fully nonlinear mechanism in which all harmonics are coupled.

The radiation of tails, of course, eventually leads to a decay of the main pulse, but the
asymptotic analysis of Section 5 clearly neglects radiation damping. To estimate the time
scale over which this approximation is expected to be valid, we recall from basic linear wave
theory that the energy flux through an oscillatory tail of constant amplitude is proportional to
the square of the tail amplitude. Given that the main pulse hasO(ε) energy, conservation then
implies that radiation damping becomes important whent = O(ε exp(π |κ(n)∗ |/βε)), where
n corresponds to the dominant radiated tail. For times less than this exponentially long time
scale, the pulse envelope is quasi-steady and the radiated tails extend over a long distance in
comparison with the envelope lengthscale 1/ε, as assumed in the asymptotic theory.
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Table 2. Comparison of asymptotically predicted and numerically
determined tail amplitudes for then = 2 andn = 0 resonances.

Resonance ε Predicted Numerical

n = 2 0·0050 1·5× 10−4 9·0× 10−5

0·0045 4·5× 10−5 3·5× 10−5

0·0040 9·8× 10−6 9·8× 10−6

n = 0 0·0140 6·6× 10−4 2·0× 10−4

0·0113 6·7× 10−5 4·5× 10−5

0·0100 1·4× 10−5 1·2× 10−5

In the weakly nonlinear régime(ε � 1), we may then attempt a comparison of the asymp-
totic result (29) with the tails radiated by a pulse, initially in the form of an NLS solitary
wave group given by expansion (15), as it evolves towards the quasi-steady state that the
analysis predicts. For this purpose, the carrier wavenumbersk0 = 0·4 and k0 = 0·75 are
chosen again so then = 2 and then = 0 resonances, respectively, contribute the dominant
tails. The numerically determined tail amplitudes are averages over 300 cycles in then = 2
case and 100 cycles in then = 0 case; this averaging was done after the tails had formed
clearly, specifically at timet = 6000− 7000 for then = 2 resonance andt = 8000− 9500
for then = 0 resonance. For the relatively small values ofε considered here, only one peak
corresponding to the dominant radiated wavenumber according to the resonance conditions
(19) was visible in the wavenumber spectrum. The comparisons are summarized in Table 2.

As expected, agreement between the asymptotic and numerical results improves asε is
decreased. On the other hand, for larger values ofε, like those used in the simulations depicted
in Figures 2 and 4, the asymptotic expression (29) grossly overpredicts the tail amplitude.

Although radiation damping of the main pulse occurs on an exponentially long (with re-
spect toε) time scale, it is worth emphasizing that the radiated tails develop on a much shorter
time scale: as discussed in Section 4, the spatial extent of a radiation front with wavenumber
k(n)∗ is controlled by the relative group speedcg(k(n)∗ )−cg(k0) which is essentially independent
of ε. We must keep this fact in mind when assessing the usefulness of the NLS approach for
modelling the long-time dynamics of weakly nonlinear pulses which, according to the NLS
theory, evolve on anO(1/ε2) time scale. For instance, if we consider the example with carrier
wavenumberk0 = 0·4 discussed in Section 4 in which the pulse has moderate steepness
(ε = 0·01), we find that 1/ε2 = 10,000 while it is clear from Figure 2 that after onlyt = 750
the initial signal has been modified substantially owing to the radiated tails, and this would
be completely missed by the NLS equation. On the other hand, for a pulse with a very small
steepness the radiation amplitude is entirely negligible and the NLS approach is certainly
adequate.

Apart from the fifth-order KdV Equation, the mechanism explored here for the generation
of tails is expected to be applicable in general to nonlinear dispersive wave systems that admit
NLS envelope solitons to leading order. From the resonance conditions (19) it is relatively
straightforward to predict the wavenumbers that will be radiated by a pulse in a given system
but there is no simple criterion, besides direct numerical simulation, to decide whether the
radiation amplitude will be significant for moderate values of the pulse steepness. A relative
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measure, however, may be developed using the current study as a guideline. In particular, it
may suffice to determine the form of the exponential factor appearing in (29) which is the
dominant controlling factor of the radiation amplitude; this requires carrying the asymptotic
analysis as far as (21) and computing the values ofκ(n)∗ which are easily related to the tail
wavenumbersk(n)∗ .

Theoretically, the fact that an initially locally confined solitary wave pulse of the NLS type
radiates tails of non-decaying amplitude indicates that nonlinear wave pulses with envelopes
of permanent form, as predicted by the NLS Equation, would fail to be locally confined in
general owing to exponentially small terms. Evidence of this non-local behavior has also
been presented in a study by Bryant [21] who investigated oblique wave groups in deep
water numerically without invoking the narrow-band assumption. Starting with periodic wave
groups, he approached, in the large envelope length-to-carrier wavelength limit, a wave group
close to an NLS envelope soliton but with additional small resonant peaks in the wavenumber
spectrum. These resonant components satisfied the dispersion relation for deep water waves
and amounted to small-amplitude waves outside of the main group.

Nevertheless, it is now known that there exist special circumstances under which locally
confined pulses can be obtained. In the case of the fifth-order KdV Equation for instance,
steady locally confined wavepackets in the form of solitary waves are possible near the min-
imum of the phase speed (atk0 = 1/

√
2) where the phase speed and the group speed can be

made equal, and the same is true near the minimum of the gravity-capillary phase speed in the
water-wave problem (see [20] and references given therein).

Finally, it is worth pointing out that the amplitude of radiation, although formally expo-
nentially small, can be quite substantial when dealing with pulses of moderate steepness that
contain a few carrier cycles within the envelope so the theory presented here would be most
valuable to physical settings in which this situation occurs.
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